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Abstract

The Lorentz invariance is broken for the non-Abelian monopoles. Here we
will consider the case of the ‘t Hooft—Polyakov monopole and show that the
Lorentz invariance of its field will be restored using Dirac quantization.

PACS numbers: 11.30.Cp, 03.70.+k

1. Introduction

Soon after the non-Abelian monopoles were shown to break color [1-3], Balachandran et al
[4] showed that monopoles also break the Lorentz invariance. They showed that to be true
for topologically stable as well as unstable monopoles, in the former case the monopoles are
predicted as stable topological excitations by gauge theories based on a simply connected
gauged group G, which is broken spontaneously by the ‘Higgs vacuum’ (defined by equations
(2.1)and (2.2)), to a subgroup H which is not simply connected. H cannot be simply connected
since classes of its first homotopy group, I1;(H), are isomorphic to the topological quantum
numbers of the magnetic charge. If IT; (H) = 0, then there can be no magnetic monopole: for
G simply connected, we have I1;(H) =~ I1,(G/H), where the right coset G/H is isomorphic
to the vacuum manifold of the Higgs field M, [S]. Balachandran and collaborators also showed
that the Lorentz invariance is broken in the case of topologically unstable magnetic monopoles
arising from the GNO configurations (GNO configurations are named after Goddard, Nuyts
and Olive who first introduced them [6]).

In this paper, we will consider the ‘t Hooft—Polyakov monopole’s field [7, 8] (outside its
core, i.e. in the Higgs vacuum region) and show that using results from the Dirac quantization
of this field [9] will help restoring the Lorentz invariance broken at the classical level.

The boundary conditions does not play a role in breaking the Lorentz invariance here
since we are considering free monopoles not interacting with external fields. Therefore, it is
expected that the Lorentz violation has its origin in the singular structure of the monopole’s
core.

1751-8113/07/4613943+11$30.00 © 2007 IOP Publishing Ltd  Printed in the UK 13943


http://dx.doi.org/10.1088/1751-8113/40/46/008
mailto:qandalji@hotmail.com
http://stacks.iop.org/JPhysA/40/13943

13944 K R Qandalji

2. Preliminaries

The ‘t Hooft—Polyakov monopole [5] and the Dirac quantization of its field [9]. (We will use
the metric (+,—,—,—). A Greek alphabet index runs from O to 3, and a Latin alphabet index
runs from 1 to 3, unless otherwise stated.)

The ‘t Hooft—Polyakov monopole model consists of an S O (3) gauge field interacting with
an isovector Higgs field ¢. The model’s Lagrangian is

L=—5Gi"Gupy +3D"¢ - Dyp — V(),

where ¢ = ((¢1, ¢y, $3)) and V(p) = Ir(p] +¢3 +¢3 — a2)2. G4 is the gauge field
strength: G" = 9 W)? — 3" WS — ecapc W, W, where W' is the gauge potential.

The model’s Lagrangian full symmetry group SO(3), generated by 7,’s, is spontaneously
broken, by the Higgs vacuum (defined below), down to SO(2) (~U(1)), generated by % The
model’s non-singular extended solution looks, at large distances, like a Dirac monopole.

The monopole’s energy finiteness implies that there is some radius r( such that for » > ry
we have, to a good approximation,

D¢ = 0"p — eW" x ¢p = 0, 2.1)
and
Pi+pr+di—a’=0 (= V(p)=0). 2.2)

Regions of spacetime, where the above two equations are satisfied, constitute the Higgs
vacuum.
The general form of W# in the Higgs vacuum is [10]

1 1
W= g x 0+ - A", 23
a‘’e a
where A" is arbitrary. It follows that
1
G = —¢pF", 2.4)
a
where
1
FH = T¢' (0" x 3" ¢p) + 01 AY — VA, 2.5
a’e
so in Higgs vacuum £ = —%G‘;”Gaw, and on account of (2.2) and (2.4), we get
L=—1F"F,,.

In the Higgs vacuum region, we also have the conjugate momentum of dynamical
coordinates, A"7(x)’s and ¢;(X)’s, given by [9]

0L _ Erst |0, forn =0
l_I,](x) = aA”(x) - E‘f’ran(bsaod’t + anAO - aOAn - {EOa forn == 1’ 2.3 (2-6)
and
0L Eijl k Erst
= — = ——¢;0"p; | — P, 00Ps0rP; + IAr — Ao ) . 2.7
7;(x) 3 0) 13,0107 <a3e¢ 05 Ok s + o Ar — Ik 0) 2.7)

As for the Dirac quantization of the monopole’s field (i.e. in the Higgs vacuum region), the
details are given in [9], but we will quote here the equations we will need in section 3.
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The complete set of constraints in the axial gauge, ¢, (@ =1, ..., 8), are [9]
o
G =021 — 1P — 73)( ~ 0,
o
$=¢3Pr — @3 — R 0,
1
{3= 272(051‘131 + P2 + 3 P3) 0,

L=x=¢l+¢r+d5—a’~0,
¢ =9'Tl; ~ 0,

1 3 3 3
C6 = E(fﬁza ¢1 — ¢107¢) — A3 ~ 0,

(2.8)

1 3 3 3
= ;(@533 $2 — ¢207¢3) — A"¢ ~ 0,
g = A~ 0,

where ®; = 7 + 2 ;9% ¢; 1 and o = 3-T1;0/ .. To carry out the Dirac brackets in what
follows below, we define (see [9]) Cop(x, x) = {¢u(x), L5 (X)} g, ~0:y=1.....8-

It is sufficient for our purposes here to mention that the only non-vanishing elements of
C‘;al, are Cl_61, C1_71’ Cl_gl, C2_61, C2_71, Cz_gl, C3_41, C5_61, C5_71, C5_8l and their transposes. Again,
for the exact values of C(;al, in the Higgs vacuum region of the monopole, see [9].

3. Restoration of the Lorentz invariance

In this section, we will show that incorporating quantum effects into the theory through
evaluating the Dirac brackets [11, 13] of the Lorentz generators, using results quoted in
section 2, will result in the manifest restoration of the Lorentz invariance of the monopole’s
field which was broken at the classical level.

The conventional expressions of the angular momenta and boosts for the Yang—Mills
fields are

1
lq=fd%RXG%xBah Kﬁ=§/&xﬁwﬁEm+%ﬂ%% 3.1

where a is the internal symmetry index.
We also have

By = %Si,jkGajk, (Ey)i = —Gaoi- (3.2)

In the monopole’s field outside its core (i.e. in the Higgs vacuum region) and by using equations
(2.2), (2.4)—(2.6), (3.1) and (3.2), L; and K; will reduce there to

1
Li = _igijkgklmgmpq / d3x XjF()[qu,
| | 3.3)
K, = E/dSX X (F()jFoj + Zé‘]pq&‘]kmFPqum).
(a) First, we evaluate the (equal-time) Dirac bracket of two L;’s [11, 13]:
{Li(t), Ly(D)}p) = {Li (@), Ln(2)} —/ {Li(1), So(x, 1)} Px
x Clg (6, X3 1) X {5 (K, 1), Ly (1)) (3.4)

(For three-dimensional indices, we use the simplifying equation &;x&x, = 8i18jm — 6imd1.)
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Using equation (2.6), the (equal-time) first term on the right-hand side of equation (3.4)
will be

1 / !
{L;(t), Ly(t)} = 7 EiikEkImEmpq Ehg € fed Edch // d*x dx XjX,
X AT (%) Fpg (x), TLe (x") Fep (X)) M= (3.5)
Using equation (2.5), we form

{T(xX) Fpg (), T (") Fop (X o= = Te (X |1 Fpg () (819 6 (X' — X) — 81508 (X' — X))
+ Fop () 1= T11 (0) (8469, 8 (X — X') — gpedy8(x — X)). (3.6)

Using equation (3.6), (3.5) will reduce to
{Li, Ly} = %(Eijksleh — Eick€hjl)EkimEmpq /d3x X, Fpy
+ %(eijkshgf — &ijfEngk)EkImEAIDE fedEmpg f d*x Xjxg FgopIl,
= —%(8,';,]'861,11 + Eine€ jpqg) f d*x X, Fpy

1
3
+ E(Sijkghgl - gijlghgk)gklmgmpq d’x xjngpqaene

1
— E(Sijkghgb — €ijbEhgk)EkemEmpq / x x4 Fpy 9T, (3.7)

Upon integrating the second and third terms on the right-hand side of equation (3.7) by parts
and simplifying, it will reduce to

1
{Liv Lh} = —¢&iu Ly + Egijkghlggklmgmpq /d3x xj-xgneaerq

1
3
+ E(Sijkghgb - Eijbghgk)gkemgmpq dx xjxgneaprq
1 3
= _SihkLk + Egijkghlggklmgmpq d’x ijgneaerq

1
3
+ E8ijr8hg38rstgtkb8kem€mpq d -x-xjxgneaprq

1
= —&inkLi = &injempg /d3x XX e d Fpy - (3.8)

Equation (3.8) will reduce, on the constraint surface and on account of ¢4, to
{Li, Ly} =~ —ein Ly, (3.9

where equation (3.9) is true since the second term in the last equality of equation (3.8) vanishes
weakly on the constraint surface. This is true because &,,,,09,, F'», vanishes on account of ¢4,
as we can easily see using equation (2.5):
& &
EmpgOm Fpg = %am[cp. (3 X 9y) + A, — 3,A,] = %am (0,0 x 3,0) ~ 0,
(3.10)

where we used in the last equality the equation ¢ - 9,,¢ ~ 0, which results from the definition
of ¢4 (wWhere &4 = ¢ - ¢ — a® ~ 0, see equation (2.8)).



Restoration of Lorentz invariance of ‘t Hooft—Polyakov monopole field 13947

The second term on the right-hand side of equation (3.4) vanishes on the constraint
surface. To see this, we start by evaluating the equal-time Poisson brackets of ¢;’s and L;’s
using equations (2.5), (2.6), (2.8) and (3.3):

1
{Li(t)’ gl(x/)}b/:t = _Egijkgklmgmpq / d3x Xj{F()](X)qu()C), é‘l (x/)|t/=t}

_ _ EijkErimEmpq / d*x x; F (x) [8(1«¢)3(x/)|,«:,3p5(x —x)

2ae
— 0y p3(x) = 0,8 (x — X)

E3rsEruv /
+2 G5 (X 11=1hu (X) (3ppy (x) 08 (X — X') — 3,00, (x)3,8(x — X)) | ~ 0,
a2
3.11)
where (3.11) vanishes on the constraint surface on account of ¢y.
Similarly,
1
{Li(t)v ;2(x/)}|t’:t = _Egijkgklmgmpq / d3x -xj{FOI(x)qu ()C), ;2(x/)|t’=t}
EijkEkimEm
= / d*x xj For(x) [ 1 () 1= 0,8 (x — X)
ae
/ ’ Elrs€ruv /
— 01 (xX)]r=10,8(x — X)) + T(PS(x M=t (x)
X (0,¢y (x)0y8(x — X') — 0,60, (x)3,8(x — x/))] ~ 0, (3.12)
which also vanishes on the constraint surface on account of 4. We also, easily, get
, 3
{Li(®), ()= = _Egijkgmnpx}FOl(x/)¢m(x/)ak¢n(x/)al¢p(x/) )
t'=t
{Li(1), §4(x/)}|z/=z = {L;(1), ;5(x/)}|t’=t =0,
! 1 ’ i !
{L;(®), t6(x)}Hr=r = Esijksk.%msmpqijpq (X3 (x") L (3.13)
! 1 ! !
{L;(®), &7 o= = Egijkngmempqxjqu(x/)d)l(-x ) ,
t'=t
! 1 !
{Li(t)’ gS(X )}|t/=t = - Egijk8k3m8mpqxj qu(x/)
t'=t

We see easily, using equations (3.11) and (3.12) (which vanish on the constraint
surface on account of ¢4), equation (3.13) and the values of C;o},(x, X';t) given in
[9], that the second term on the right-hand side of equation (3.4) vanishes on the
constraint surface in a trivial way, since the only non-vanishing elements of C,, are
Cid, Ct, O, Col, €3, Ot €3, €5, €5, €5l and their transposes.

So from the above result and equation (3.9), we get

{Li, Ln}p@y = —&ink L, (3.14)

which verifies the first of the Lorentz algebra.
(b) Next, to verify the second of the Lorentz algebra by evaluating the Dirac bracket of K;’s:

{Ki (1), Kn()}p() E{Ki(t),Kh(t)}—//{Ki(t),Ia(x, 1}
x d*x €L (x, x5 1) Bx' (¢ (X, 1), Ki(1)), (3.15)
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where using equations (2.5), (2.6) and (3.3), and without using any constraints, we get

1
{Ki (1), Kp(1)} = 5 EkimEmpq / & x(gknginxi — 8kn&1ixn) FonFpq
1
= _58i11j8jlk8knm5mpq f d3x xlFOanq = 8ihij- (316)

The second term on the right-hand side of equation (3.15) vanishes on the
constraint surface in a trivial way since the only non-vanishing elements of C.] are

Cid, Ct O, Col, €5, G5t €3, €5, €5, €5l and their transposes, and since
{Ki (), { (X y= =0, fora=1,2,4,5 (3.17)

on the constraint surface on account of ¢4 alone.
For the sake of completeness, we find

{Ki(), & = = Fermx] Fpqg (X )1 (x') 3y (x") 3y by (x”)
{Ki (1), t6(x"V} = = —x{ Fo3(x")p3(x) |y =,
{Ki(0), &7 o= = —x] Fos (x) 1 (X)) 1=,
{Ki (1), (W o= = x{ Fo3(x") 1=
Using equations (3.16) and (3.17), we get
{Ki, Kn}pe) = €ink L, (3.19)

which verifies the second of the Lorentz algebra.
(c) To verify the next Lorentz algebra by evaluating the equal-time Dirac bracket of K;’s and
Ly’s,

{Ki(0), Ly ()} p(e) = {Ki(1), Ly()} —//{Ki(t),é“a(X, N}

x d*x €L (x, X5 1) Bx' (g (X, 1), Ly (1)) (3.20)

Using equations (3.3), (3.6), (2.5) and (2.6), the first term on the right-hand side of equation
(3.20) will be

(Ki(0), Ly (1)) = —m / d’x / &’ 2, (4gnq Fon () For ), 8 (x — X))

t'=t’

(3.18)

+ &rsu€rvw&iu Fow (x)qu (x/)as’S(X - X/))
. EnjkEkimEmpq

= T / dsx Xi [4F0qap(ij01)+ 8rslervwFuwas(-ijpq)]

3 3
=8hjk/d xxinFOkalF()l —Ehjk/d )CxinF()lakFol

Enjn€kimEkpq

EnjkEkim
Ty 4

1 /d3xx,-ijlm8anq,
(3.21)

where the first term in the last equality on the right-hand side of equation (3.21) vanishes
weakly on the constraint surface on account of {5 and equation (2.6), while the third term on
the right-hand side vanishes on the constraint surface on account of ¢4 as was explicitly shown
in equation (3.10). So, upon integrating the second and fourth terms on the right-hand side by
parts and simplifying, equation (3.21) will reduce to

{Ki (), Ly(0)} ~ —ein; K; (1), (3.22)

satisfied ‘weakly’ on the constraint surface on account of ¢4 and ¢s.

fd3x XiXj Flm (gnpqan qu) -
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The second term on the right-hand side of equation (3.20) vanishes on the constraint
surface in a trivial way by using equations (3.11)—(3.13) and (3.17) and since the only non-
vanishing elements of Coja', are Cfél, C]}l, C&l, C{GI, C{71, ngl, C;ll, C;61, C;71, ngl and their
transposes.

So, we get

{Ki(t), Ly(O}pey) = —€inj K; (@), (3.23)
which verifies the last of the homogenous Lorentz algebra.
(d) Next, we verify the Lorentz algebra involving P*. In the monopole’s field outside its
core (i.e. in the Higgs vacuum region) and by using equations (2.2), (2.4)—(2.6), (3.2) and
equation (13a) in [9], we have

1
P = /dSX(Eu xBy)i = _Egilmgmpq/dS-x FOZqu

(3.24)
0 1 3 1
P =H=§/dX<F0jE)j+§quFm>'
Analogously to equations (3.11)—(3.13), we find on the constraint surface
{Pi(1), L}y =0, fora=1,2,4,5 (3.25)
and
4 3 /
{Pi(1), 3D }Hr= = _EeijkgklmguvwFOj(x )i (X)31y (XN (x|,
t'=t
/ l / /
{Pi(t)v gG(X )}|t’=t = 5"3‘1'3m8mpqqu()C )¢3(x ) s
=t (3.26)

{Pi(1), &7 ()} =

)

t'=t

1 / ’
§8i3m8mqupq ()C )d)l(x )

’ 1 !
{Pi(1), ;s(x) = = _ESiSmSmqupq(x )
t'=t

Equations (3.11)—(3.13), (3.17) and (3.25) and the fact that the only non-vanishing elements
of C;l are C!, C1', Crd, Cof s Coft Cogt, €31, €5, €5, €5 and their transposes imply
that the Dirac brackets of P; with P;’s, L;’s and K ;’s are equal to the corresponding Poisson
brackets evaluated on the constraint surface with constraints ¢,’s, taken as strong equations.

So we get using equations (3.24) and (3.6) and integration by parts
(P (1), Pi()}pi) = {Pi (1), Pi()}s=0

1 1
= <§8ijk8klm/d3x Flmannn - Egijkgmpq/dS-x Hkameq)

= 07
¢,s=0

(3.27)

where in the last equality the first term vanishes on account of ¢s and the second term vanishes
on account of ¢4 or equation (3.10).
Similarly, we also have

{Pi(®), Lj(D}pey = {Pi(®), Lj()}Hers=0 (3.28)
where using equations (2.6), (3.3), (3.6) and (3.24)

1 ! !
(PO Ly O) = gemetpeiagepeasien [ [ € Fu (6 Fyy 00, Fos ) )=

1 1
3 3
= Egilmsmpqgjkl d xF()kaq — Esi/mgmpqugl d xngpqakF()k

1

3
+ Eeiklempqejglfd xng,,qamFOk,
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where the second term on the right-hand side vanishes on the constraint surface on account of
¢s. So, upon integrating the third term on the right-hand side by parts and then using equation
(3.10), which results from ¢4, we get on the constraint surface

{(Pi(t),L;()} ~ %gijkgklmgmpq/(Px FoFpy = —&iji Pr(1),
which implies when substituting in equation (3.28)

{P;(t), Li()}pr) = —¢iji Pe(t). (3.29)
We also have

{Pi(), Ki®O}pi) = {Pi(1), K;j(®)}cs=0s (3.30)
where using equations (2.5), (2.6), (3.3) and (3.24) we have

(PO K5 00) = ety [ [ 5 6, (Fuoms P (010, 30x = %)

Eruv€rsw
+—

F”“(x/)ll/:lqu(x)gslaw'(s(xl — X))

EilmEmpq Ekuv

:/d3xij0k8iF0k—/d3xij0i8kE)k— 4

X /d3x qu(gklj - Sklwxjaw)Fuv» (331)

where the second term on the right-hand side of the last equality will vanish on the constraint
surface on account of Zs.

Integrating the first term on the right-hand side of equation (3.31) by parts and simplifying
the third term, and then integrating one of its resulting terms further by parts and simplifying
further,

1 5,“8 m€Em
(B0, K 0) ~ 58 / @x iy Foy + 2L / &x FyF,

Eikl
— IT d3x x]‘Fk](gmpqam qu)’

and the third term on the right-hand side will vanish on account of equation (3.10), or
equivalently ¢4. So we get using equation (3.24)

{Pi(1), K; (1)} ~ 8;; H (1),
which if substituted in equation (3.30) implies

{Pi(t), Kj(®)}pi) = 8ijH (). (3.32)

(e) Finally, the Lorentz algebra involving H.
Analogously to equations (3.11)—(3.13), we find on the constraint surface

{H(1), ta(xX)}y=r =0, fora=1,2,4,5 (3.33)

and

3
{H®), 50N r=r = —=etam Fpg (X (x)0, 1 (x) 0y (x|

a’e =t
{H(@), ¢6(x) = = —Fos(x")p3(x) =, (3.34)
{H(@), &7 = = —Fos(x")p1 (X |r=r,
{H(@), &)} = = Foz(x")]rr=-
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Equations (3.11)—(3.13), (3.17), (3.25) and (3.33) and the fact that the only non-
vanishing elements of C;}, are C 1!, C}.', Ciel, Caf's €7ty Cog', €3l €5, €57ty €t and their
transposes imply that the Dirac brackets of H with P;’s, L;’s and K;’s are equal to the
corresponding Poisson brackets evaluated on the constraint surface with constraints ¢,’s,
taken as strong equations.

So we have

{Li(t), H®)}pi) = {Li (@), H(®)}|c/5=0, (3.35)
where using equations (2.5), (2.6), (3.3) and (3.24)

EijkEkimEm ’ / ’
{(Li(t), H(t)} = —W (// Bx &’ x{Fo (x) F g (), Fou (x) Fou (X))
+ EbcdEbfg

4

P / / P ' x, (Fon o For (1) gqn 3% — X')

t'=t

[[ &dx d3x/xj{F01(x)qu(x), Foa(x")Fro(x"} B >

Ebcd Ebf
+C—ng

1 e =t Fpg (%) et 08 (X' — X)) , (3.36)

where upon integrations by parts at suitable places, using the properties of the Levi-Civita
tensor, and simplifying equation (3.36) will reduce to

EiikEkim
(Li(r), H(®D)} = —&ijx / & x; Fo (0 For) — =22 f & x; Fi (Enpg 0 Fpg) ~ 0, (3.37)

where the first term on the right-hand side vanishes on the constraint surface on account of
s, and the second term vanishes on account of ¢4 or equation (3.10). So, equation (3.35) will
now give

{Li(), HO)}p) = {Li(1), H(D)}]g5=0 = 0. (3.38)

We also have

{Ki (1), H®)}py) = {Ki(t), H(@)}|¢5=0, (3.39)
where using equations (2.5), (2.6), (3.3) and (3.24)

(Ki(1), H(t)} = % / / & dx x; (1Foj (¥) Foj (x), Fu(X') Fog (X))} r—
+ {Fiy (x) Fpg (x), Foj; (x") Fo; (x")} =)
= W / / Ex &' x; (Fpg ()= Foj (x)g108(x — X')

+ Foj ()= Fr (x) 898 (X' — X))

1
= Eeiklslpq[d3xF0kaq = —P,'. (340)
So equations (3.39) and (3.40) now give
{Ki (), H()}pey = {Ki(t), H()}5=0 = —Pi. (3.41)

Finally, we also have

{Pi(), HO}p) = {Fi(1), H(D)}]g5=0, (3.42)
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where using equations (2.5), (2.6) and (3.24)

(P o) = S0t [ [ [ o) £y 00 oy () oy )

EkrsEkuv / ’
Frs () Fua @) ]|
4 t'=t
= eilmgmpq // d3x dSX/ (Foj(x’)|t/=tF01(x)gjq8p8(x — X/)
EkrsEku
+ () i Fpg (803K = ))

where it reduces, upon integrations by parts at suitable places, using the properties of the
Levi-Civita tensor, dropping the surface terms at infinity and simplifying, to

Eij
{P,‘(l‘), H(I)} = —/d3x Foi(ajFoj — Tjk / d3x ij(smqumeq) ~ 0, (343)

where the first term on the right-hand side vanishes on the constraint surface on account of
s, and the second term vanishes on account of ¢4 or equation (3.10). So, equation (3.42) will
now give

{Pi(1), H)}p) = {Pi(1), H(D)}]g5=0 = 0. (3.44)

Equations (3.14), (3.19), (3.23), (3.27), (3.29), (3.32), (3.38), (3.41) and (3.44) are strong
equations, since inside the Dirac brackets the constraints equations are taken to be strong.
Hence, if the Lorentz algebra is valid at the first level of the Dirac brackets, then it will also
be valid at all higher levels.

4. Conclusion

While [4] showed that the Lorentz invariance of non-Abelian monopoles to be broken at the
‘classical’ level, equations (3.14), (3.19), (3.23), (3.27), (3.29), (3.32), (3.38), (3.41) and
(3.44) here show explicitly that en route to ‘quantization’, we were able to restore the Lorentz
invariance of the ‘t Hooft—Polyakov monopole’s field. Here we used recent results from the
Dirac quantization of the ‘t Hooft—Polyakov monopole field (i.e. in the Higgs vacuum), given
by [9], to show that the Lorentz algebra is valid in this region upon quantization. In particular,
we used the constraints ¢4 and ¢5 repeatedly in evaluating the Dirac brackets of the Lorentz
algebra here. While ¢y is just the Higgs vacuum condition, it seemed that {s was most essential
in proving the Lorentz invariance in this region.
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