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Abstract
The Lorentz invariance is broken for the non-Abelian monopoles. Here we
will consider the case of the ‘t Hooft–Polyakov monopole and show that the
Lorentz invariance of its field will be restored using Dirac quantization.

PACS numbers: 11.30.Cp, 03.70.+k

1. Introduction

Soon after the non-Abelian monopoles were shown to break color [1–3], Balachandran et al
[4] showed that monopoles also break the Lorentz invariance. They showed that to be true
for topologically stable as well as unstable monopoles, in the former case the monopoles are
predicted as stable topological excitations by gauge theories based on a simply connected
gauged group G, which is broken spontaneously by the ‘Higgs vacuum’ (defined by equations
(2.1) and (2.2)), to a subgroup H which is not simply connected. H cannot be simply connected
since classes of its first homotopy group, �1(H), are isomorphic to the topological quantum
numbers of the magnetic charge. If �1(H) = 0, then there can be no magnetic monopole: for
G simply connected, we have �1(H) � �2(G/H), where the right coset G/H is isomorphic
to the vacuum manifold of the Higgs fieldMo [5]. Balachandran and collaborators also showed
that the Lorentz invariance is broken in the case of topologically unstable magnetic monopoles
arising from the GNO configurations (GNO configurations are named after Goddard, Nuyts
and Olive who first introduced them [6]).

In this paper, we will consider the ‘t Hooft–Polyakov monopole’s field [7, 8] (outside its
core, i.e. in the Higgs vacuum region) and show that using results from the Dirac quantization
of this field [9] will help restoring the Lorentz invariance broken at the classical level.

The boundary conditions does not play a role in breaking the Lorentz invariance here
since we are considering free monopoles not interacting with external fields. Therefore, it is
expected that the Lorentz violation has its origin in the singular structure of the monopole’s
core.

1751-8113/07/4613943+11$30.00 © 2007 IOP Publishing Ltd Printed in the UK 13943
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2. Preliminaries

The ‘t Hooft–Polyakov monopole [5] and the Dirac quantization of its field [9]. (We will use
the metric (+,−,−,−). A Greek alphabet index runs from 0 to 3, and a Latin alphabet index
runs from 1 to 3, unless otherwise stated.)

The ‘t Hooft–Polyakov monopole model consists of an SO(3) gauge field interacting with
an isovector Higgs field φ. The model’s Lagrangian is

L = − 1
4G

µν
a Gaµν + 1

2Dµφ · Dµφ − V (φ),

where φ = ((φ1, φ2, φ3)) and V (φ) = 1
4λ

(
φ2

1 + φ2
2 + φ2

3 − a2
)2

. G
µν
a is the gauge field

strength: G
µν
a = ∂µWν

a − ∂νW
µ
a − eεabcW

µ

b Wν
c , where W

µ
a is the gauge potential.

The model’s Lagrangian full symmetry group SO(3), generated by Ta’s, is spontaneously
broken, by the Higgs vacuum (defined below), down to SO(2) (�U(1)), generated by φ·T

a
. The

model’s non-singular extended solution looks, at large distances, like a Dirac monopole.
The monopole’s energy finiteness implies that there is some radius r0 such that for r � r0

we have, to a good approximation,

Dµφ ≡ ∂µφ − eWµ × φ = 0, (2.1)

and

φ2
1 + φ2

2 + φ2
3 − a2 = 0 (⇒ V (φ) = 0). (2.2)

Regions of spacetime, where the above two equations are satisfied, constitute the Higgs
vacuum.

The general form of Wµ in the Higgs vacuum is [10]

Wµ = 1

a2e
φ × ∂µφ +

1

a
φAµ, (2.3)

where Aµ is arbitrary. It follows that

Gµν = 1

a
φFµν, (2.4)

where

Fµν = 1

a3e
φ · (∂µφ × ∂νφ) + ∂µAν − ∂νAµ, (2.5)

so in Higgs vacuum L = − 1
4G

µν
a Gaµν , and on account of (2.2) and (2.4), we get

L = − 1
4FµνFµν .

In the Higgs vacuum region, we also have the conjugate momentum of dynamical
coordinates, Aη(x)’s and φi(x)’s, given by [9]

�η(x) ≡ ∂L
∂Ȧη(x)

= εrst

a3e
φr∂ηφs∂0φt + ∂ηA0 − ∂0Aη =

{
0, for η = 0

Fi0, for η = i = 1, 2, 3
(2.6)

and

πl(x) ≡ ∂L
∂φ̇l(x)

= εijl

a3e
φi∂

kφj

(εrst

a3e
φr∂0φs∂kφt + ∂0Ak − ∂kA0

)
. (2.7)

As for the Dirac quantization of the monopole’s field (i.e. in the Higgs vacuum region), the
details are given in [9], but we will quote here the equations we will need in section 3.



Restoration of Lorentz invariance of ‘t Hooft–Polyakov monopole field 13945

The complete set of constraints in the axial gauge, ζα (α = 1, . . . , 8), are [9]

ζ1 = φ2�1 − φ1�2 − α3

2
χ ≈ 0,

ζ2 = φ3�2 − φ2�3 − α1

2
χ ≈ 0,

ζ3 = 1

2a2
(φ1�1 + φ2�2 + φ3�3) ≈ 0,

ζ4 = χ ≡ φ2
1 + φ2

2 + φ2
3 − a2 ≈ 0,

ζ5 = ∂i�i ≈ 0,

ζ6 = 1

ae
(φ2∂

3φ1 − φ1∂
3φ2) − A3φ3 ≈ 0,

ζ7 = 1

ae
(φ3∂

3φ2 − φ2∂
3φ3) − A3φ1 ≈ 0,

ζ8 = A3 ≈ 0,

(2.8)

where �l ≡ πl + εij l

a3e
φi∂

kφj�k and αk ≡ 3
a3e

�j∂
jφk . To carry out the Dirac brackets in what

follows below, we define (see [9]) Cαβ(x, x ′) = {ζα(x), ζβ(x ′)}|ζγ ≈0;γ=1,...,8.

It is sufficient for our purposes here to mention that the only non-vanishing elements of
C−1

αα′ are C−1
16 , C−1

17 , C−1
18 , C−1

26 , C−1
27 , C−1

28 , C−1
34 , C−1

56 , C−1
57 , C−1

58 and their transposes. Again,
for the exact values of C−1

αα′ in the Higgs vacuum region of the monopole, see [9].

3. Restoration of the Lorentz invariance

In this section, we will show that incorporating quantum effects into the theory through
evaluating the Dirac brackets [11, 13] of the Lorentz generators, using results quoted in
section 2, will result in the manifest restoration of the Lorentz invariance of the monopole’s
field which was broken at the classical level.

The conventional expressions of the angular momenta and boosts for the Yang–Mills
fields are

Li =
∫

d3x[x × (Ea × Ba)]i , Ki = 1

2

∫
d3x xi(EjaEja + BjaBja), (3.1)

where a is the internal symmetry index.
We also have

(Ba)i ≡ 1
2εijkGajk, (Ea)i ≡ −Ga0i . (3.2)

In the monopole’s field outside its core (i.e. in the Higgs vacuum region) and by using equations
(2.2), (2.4)–(2.6), (3.1) and (3.2), Li and Ki will reduce there to

Li = −1

2
εijkεklmεmpq

∫
d3x xjF0lFpq,

Ki = 1

2

∫
d3x xi

(
F0jF0j +

1

4
εlpqεlkmFpqFkm

)
.

(3.3)

(a) First, we evaluate the (equal-time) Dirac bracket of two Li’s [11, 13]:

{Li(t), Lh(t)}D(ζ) ≡ {Li(t), Lh(t)} −
∫ ∫

{Li(t), ζα(x, t)} d3x

×C ′−1
αα (x, x′; t) d3x ′{ζα′(x′, t), Lh(t)}. (3.4)

(For three-dimensional indices, we use the simplifying equation εijkεklm = δilδjm − δimδjl .)
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Using equation (2.6), the (equal-time) first term on the right-hand side of equation (3.4)
will be

{Li(t), Lh(t)} = 1

4
εijkεklmεmpqεhgf εf edεdcb

∫ ∫
d3x d3x ′ xjx

′
g

×{�l(x)Fpq(x),�e(x
′)Fcb(x

′)}|t ′=t . (3.5)

Using equation (2.5), we form

{�l(x)Fpq(x),�e(x
′)Fcb(x

′)}|t ′=t = �e(x
′)|t ′=tFpq(x)(gcl∂b′δ(x′ − x) − glb∂c′δ(x′ − x))

+ Fcb(x
′)|t ′=t�l(x)(gqe∂pδ(x − x′) − gpe∂qδ(x − x′)). (3.6)

Using equation (3.6), (3.5) will reduce to

{Li, Lh} = 1

2
(εijkεleh − εiekεhjl)εklmεmpq

∫
d3x xj�eFpq

+
1

2
(εijkεhgf − εijf εhgk)εklmεdlbεf edεmpq

∫
d3x xjxgFpq∂b�e

= −1

2
(εihj εepq + εiheεjpq)

∫
d3x xj�eFpq

+
1

2
(εijkεhgl − εijlεhgk)εklmεmpq

∫
d3x xjxgFpq∂e�e

− 1

2
(εijkεhgb − εijbεhgk)εkemεmpq

∫
d3x xjxgFpq∂b�e. (3.7)

Upon integrating the second and third terms on the right-hand side of equation (3.7) by parts
and simplifying, it will reduce to

{Li, Lh} = −εihkLk +
1

2
εijkεhlgεklmεmpq

∫
d3x xjxg�e∂eFpq

+
1

2
(εijkεhgb − εijbεhgk)εkemεmpq

∫
d3x xjxg�e∂bFpq

= −εihkLk +
1

2
εijkεhlgεklmεmpq

∫
d3x xjxg�e∂eFpq

+
1

2
εijrεhgsεrst εtkbεkemεmpq

∫
d3x xjxg�e∂bFpq

= −εihkLk − 1

2
εihj εmpq

∫
d3x xjxe�e∂mFpq. (3.8)

Equation (3.8) will reduce, on the constraint surface and on account of ζ4, to

{Li, Lh} ≈ −εihkLk, (3.9)

where equation (3.9) is true since the second term in the last equality of equation (3.8) vanishes
weakly on the constraint surface. This is true because εmpq∂mFpq vanishes on account of ζ4,
as we can easily see using equation (2.5):

εmpq∂mFpq = εmpq

a3e
∂m[φ · (∂pφ × ∂qφ) + ∂pAq − ∂qAp] = εmpq

a3e
∂mφ · (∂pφ × ∂qφ) ≈ 0,

(3.10)

where we used in the last equality the equation φ · ∂µφ ≈ 0, which results from the definition
of ζ4 (where ζ4 ≡ φ · φ − a2 ≈ 0, see equation (2.8)).
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The second term on the right-hand side of equation (3.4) vanishes on the constraint
surface. To see this, we start by evaluating the equal-time Poisson brackets of ζi’s and Li’s
using equations (2.5), (2.6), (2.8) and (3.3):

{Li(t), ζ1(x
′)}|t ′=t = −1

2
εijkεklmεmpq

∫
d3x xj {F0l(x)Fpq(x), ζ1(x

′)|t ′=t }

= − εijkεklmεmpq

2ae

∫
d3x xjF0l(x)

[
∂q ′φ3(x

′)|t ′=t ∂pδ(x − x′)

− ∂p′φ3(x
′)|t ′=t ∂qδ(x − x′)

+
ε3rsεruv

a2
φs(x

′)|t ′=tφu(x)(∂pφv(x)∂qδ(x − x′) − ∂qφv(x)∂pδ(x − x′))
]

≈ 0,

(3.11)

where (3.11) vanishes on the constraint surface on account of ζ4.
Similarly,

{Li(t), ζ2(x
′)}|t ′=t = −1

2
εijkεklmεmpq

∫
d3x xj {F0l(x)Fpq(x), ζ2(x

′)|t ′=t }

= −εijkεklmεmpq

2ae

∫
d3x xjF0l(x)

[
∂q ′φ1(x

′)|t ′=t ∂pδ(x − x′)

− ∂p′φ1(x
′)|t ′=t ∂qδ(x − x′) +

ε1rsεruv

a2
φs(x

′)|t ′=tφu(x)

× (∂pφv(x)∂qδ(x − x′) − ∂qφv(x)∂pδ(x − x′))
] ≈ 0, (3.12)

which also vanishes on the constraint surface on account of ζ4. We also, easily, get

{Li(t), ζ3(x
′)}|t ′=t = − 3

2a5e
εijkεmnpx ′

jF0l (x
′)φm(x ′)∂kφn(x

′)∂lφp(x ′)
∣∣∣∣
t ′=t

,

{Li(t), ζ4(x
′)}|t ′=t = {Li(t), ζ5(x

′)}|t ′=t = 0,

{Li(t), ζ6(x
′)}|t ′=t = 1

2
εijkεk3mεmpqx

′
jFpq(x

′)φ3(x
′)
∣∣∣∣
t ′=t

,

{Li(t), ζ7(x
′)}|t ′=t = 1

2
εijkεk3mεmpqx

′
jFpq(x

′)φ1(x
′)
∣∣∣∣
t ′=t

,

{Li(t), ζ8(x
′)}|t ′=t = − 1

2
εijkεk3mεmpqx

′
jFpq(x

′)
∣∣∣∣
t ′=t

.

(3.13)

We see easily, using equations (3.11) and (3.12) (which vanish on the constraint
surface on account of ζ4), equation (3.13) and the values of C−1

αα′(x, x′; t) given in
[9], that the second term on the right-hand side of equation (3.4) vanishes on the
constraint surface in a trivial way, since the only non-vanishing elements of C−1

αα′ are
C−1

16 , C−1
17 , C−1

18 , C−1
26 , C−1

27 , C−1
28 , C−1

34 , C−1
56 , C−1

57 , C−1
58 and their transposes.

So from the above result and equation (3.9), we get

{Li, Lh}D(ζ) = −εihkLk, (3.14)

which verifies the first of the Lorentz algebra.
(b) Next, to verify the second of the Lorentz algebra by evaluating the Dirac bracket of Ki’s:

{Ki(t),Kh(t)}D(ζ) ≡ {Ki(t),Kh(t)} −
∫ ∫

{Ki(t), ζα(x, t)}
× d3x C−1

αα′(x, x′; t) d3x ′{ζα′(x′, t),Kh(t)}, (3.15)
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where using equations (2.5), (2.6) and (3.3), and without using any constraints, we get

{Ki(t),Kh(t)} = 1

2
εklmεmpq

∫
d3x(gknglhxi − gknglixh)F0nFpq

= −1

2
εihj εjlkεknmεmpq

∫
d3x xlF0nFpq = εihjLj . (3.16)

The second term on the right-hand side of equation (3.15) vanishes on the
constraint surface in a trivial way since the only non-vanishing elements of C−1

αα′ are
C−1

16 , C−1
17 , C−1

18 , C−1
26 , C−1

27 , C−1
28 , C−1

34 , C−1
56 , C−1

57 , C−1
58 and their transposes, and since

{Ki(t), ζα(x ′)}|t ′=t = 0, for α = 1, 2, 4, 5 (3.17)

on the constraint surface on account of ζ4 alone.
For the sake of completeness, we find

{Ki(t), ζ3(x
′)}|t ′=t = 3

4εklmx ′
iFpq(x

′)φk(x
′)∂p′φl(x

′)∂q ′φm(x ′)
∣∣
t ′=t

,

{Ki(t), ζ6(x
′)}|t ′=t = −x ′

iF03(x
′)φ3(x

′)|t ′=t ,

{Ki(t), ζ7(x
′)}|t ′=t = −x ′

iF03(x
′)φ1(x

′)|t ′=t ,

{Ki(t), ζ8(x
′)}|t ′=t = x ′

iF03(x
′)|t ′=t .

(3.18)

Using equations (3.16) and (3.17), we get

{Ki,Kh}D(ζ) = εihkLk, (3.19)

which verifies the second of the Lorentz algebra.
(c) To verify the next Lorentz algebra by evaluating the equal-time Dirac bracket of Ki’s and
Lh’s,

{Ki(t), Lh(t)}D(ζ) ≡ {Ki(t), Lh(t)} −
∫ ∫

{Ki(t), ζα(x, t)}
× d3x C−1

αα′(x, x′; t) d3x ′{ζα′(x′, t), Lh(t)}. (3.20)

Using equations (3.3), (3.6), (2.5) and (2.6), the first term on the right-hand side of equation
(3.20) will be

{Ki(t), Lh(t)} = −εhjkεklmεmpq

4

∫
d3x

∫
d3x ′ xix

′
j

(
4gnqF0n(x)F0l (x

′)∂p′δ(x − x′)

+ εrsuεrvwgluFvw(x)Fpq(x
′)∂s ′δ(x − x′)

)
= −εhjkεklmεmpq

4

∫
d3x xi

[
4F0q∂p(xjF0l )+ εrslεrvwFvw∂s(xjFpq)

]

= εhjk

∫
d3x xixjF0k∂lF0l − εhjk

∫
d3x xixjF0l∂kF0l

+
εhjkεklm

4

∫
d3x xixjFlm(εnpq∂nFpq) − εhjnεklmεkpq

4

∫
d3x xixjFlm∂nFpq,

(3.21)

where the first term in the last equality on the right-hand side of equation (3.21) vanishes
weakly on the constraint surface on account of ζ5 and equation (2.6), while the third term on
the right-hand side vanishes on the constraint surface on account of ζ4 as was explicitly shown
in equation (3.10). So, upon integrating the second and fourth terms on the right-hand side by
parts and simplifying, equation (3.21) will reduce to

{Ki(t), Lh(t)} ≈ −εihjKj (t), (3.22)

satisfied ‘weakly’ on the constraint surface on account of ζ4 and ζ5.
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The second term on the right-hand side of equation (3.20) vanishes on the constraint
surface in a trivial way by using equations (3.11)–(3.13) and (3.17) and since the only non-
vanishing elements of C−1

αα′ are C−1
16 , C−1

17 , C−1
18 , C−1

26 , C−1
27 , C−1

28 , C−1
34 , C−1

56 , C−1
57 , C−1

58 and their
transposes.

So, we get

{Ki(t), Lh(t)}D(ζ) = −εihjKj (t), (3.23)

which verifies the last of the homogenous Lorentz algebra.
(d) Next, we verify the Lorentz algebra involving P µ. In the monopole’s field outside its
core (i.e. in the Higgs vacuum region) and by using equations (2.2), (2.4)–(2.6), (3.2) and
equation (13a) in [9], we have

Pi =
∫

d3x(Ea × Ba)i = −1

2
εilmεmpq

∫
d3x F0lFpq

P 0 = H = 1

2

∫
d3x

(
F0jF0j +

1

2
FpqFpq

)
.

(3.24)

Analogously to equations (3.11)–(3.13), we find on the constraint surface

{Pi(t), ζα(x ′)}|t ′=t = 0, for α = 1, 2, 4, 5 (3.25)

and

{Pi(t), ζ3(x
′)}|t ′=t = − 3

4a5e
εijkεklmεuvwF0j (x

′)φu(x
′)∂lφv(x

′)∂mφw(x ′)
∣∣∣∣
t ′=t

,

{Pi(t), ζ6(x
′)}|t ′=t = 1

2
εi3mεmpqFpq(x

′)φ3(x
′)
∣∣∣∣
t ′=t

,

{Pi(t), ζ7(x
′)}|t ′=t = 1

2
εi3mεmpqFpq(x

′)φ1(x
′)
∣∣∣∣
t ′=t

,

{Pi(t), ζ8(x
′)}|t ′=t = −1

2
εi3mεmpqFpq(x

′)
∣∣∣∣
t ′=t

.

(3.26)

Equations (3.11)–(3.13), (3.17) and (3.25) and the fact that the only non-vanishing elements
of C−1

αα′ are C−1
16 , C−1

17 , C−1
18 , C−1

26 , C−1
27 , C−1

28 , C−1
34 , C−1

56 , C−1
57 , C−1

58 and their transposes imply
that the Dirac brackets of Pi with Pj ’s, Lj ’s and Kj ’s are equal to the corresponding Poisson
brackets evaluated on the constraint surface with constraints ζα’s, taken as strong equations.

So we get using equations (3.24) and (3.6) and integration by parts

{Pi(t), Pj (t)}D(ζ) = {Pi(t), Pj (t)}|ζ ′
αs=0

=
(

1

2
εijkεklm

∫
d3x Flm∂n�n − 1

2
εijkεmpq

∫
d3x �k∂mFpq

)∣∣∣∣
ζ ′
αs=0

= 0,

(3.27)

where in the last equality the first term vanishes on account of ζ5 and the second term vanishes
on account of ζ4 or equation (3.10).

Similarly, we also have

{Pi(t), Lj (t)}D(ζ) = {Pi(t), Lj (t)}|ζ ′
αs=0, (3.28)

where using equations (2.6), (3.3), (3.6) and (3.24)

{Pi(t), Lj (t)} = 1

4
εiklεlpqεjgf εf edεdcb

∫ ∫
d3x d3x ′x ′

g{F0k(x)Fpq(x), F0e(x
′)Fcb(x

′)}|t ′=t

= 1

2
εilmεmpqεjkl

∫
d3xF0kFpq − 1

2
εilmεmpqεjgl

∫
d3xxgFpq∂kF0k

+
1

2
εiklεmpqεjgl

∫
d3xxgFpq∂mF0k,



13950 K R Qandalji

where the second term on the right-hand side vanishes on the constraint surface on account of
ζ5. So, upon integrating the third term on the right-hand side by parts and then using equation
(3.10), which results from ζ4, we get on the constraint surface

{Pi(t), Lj (t)} ≈ 1

2
εijkεklmεmpq

∫
d3x F0lFpq = −εijkPk(t),

which implies when substituting in equation (3.28)

{Pi(t), Lj (t)}D(ζ) = −εijkPk(t). (3.29)

We also have

{Pi(t),Kj (t)}D(ζ) = {Pi(t),Kj (t)}|ζ ′
αs=0, (3.30)

where using equations (2.5), (2.6), (3.3) and (3.24) we have

{Pi(t),Kj (t)} = εilmεmpq

∫ ∫
d3x d3x ′ x ′

j

(
F0k(x

′)|t ′=tF0l (x)gqk∂pδ(x − x′)

+
εruvεrsw

4
Fuv(x

′)|t ′=tFpq(x)gsl∂w′δ(x′ − x)
)

=
∫

d3x xjF0k∂iF0k −
∫

d3x xjF0i∂kF0k − εilmεmpqεkuv

4

×
∫

d3x Fpq(εklj − εklwxj ∂w)Fuv, (3.31)

where the second term on the right-hand side of the last equality will vanish on the constraint
surface on account of ζ5.

Integrating the first term on the right-hand side of equation (3.31) by parts and simplifying
the third term, and then integrating one of its resulting terms further by parts and simplifying
further,

{Pi(t),Kj (t)} ≈ 1

2
δij

∫
d3x F0kF0k +

δij εklmεmpq

8

∫
d3x FklFpq

− εikl

4

∫
d3x xjFkl(εmpq∂mFpq),

and the third term on the right-hand side will vanish on account of equation (3.10), or
equivalently ζ4. So we get using equation (3.24)

{Pi(t),Kj (t)} ≈ δijH(t),

which if substituted in equation (3.30) implies

{Pi(t),Kj (t)}D(ζ) = δijH(t). (3.32)

(e) Finally, the Lorentz algebra involving H.
Analogously to equations (3.11)–(3.13), we find on the constraint surface

{H(t), ζα(x ′)}|t ′=t = 0, for α = 1, 2, 4, 5 (3.33)

and

{H(t), ζ3(x
′)}|t ′=t = 3

a5e
εklmFpq(x

′)φk(x
′)∂pφl(x

′)∂qφm(x ′)
∣∣∣∣
t ′=t

,

{H(t), ζ6(x
′)}|t ′=t = −F03(x

′)φ3(x
′)|t ′=t ,

{H(t), ζ7(x
′)}|t ′=t = −F03(x

′)φ1(x
′)|t ′=t ,

{H(t), ζ8(x
′)}|t ′=t = F03(x

′)|t ′=t .

(3.34)
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Equations (3.11)–(3.13), (3.17), (3.25) and (3.33) and the fact that the only non-
vanishing elements of C−1

αα′ are C−1
16 , C−1

17 , C−1
18 , C−1

26 , C−1
27 , C−1

28 , C−1
34 , C−1

56 , C−1
57 , C−1

58 and their
transposes imply that the Dirac brackets of H with Pj ’s, Lj ’s and Kj ’s are equal to the
corresponding Poisson brackets evaluated on the constraint surface with constraints ζα’s,
taken as strong equations.

So we have

{Li(t),H(t)}D(ζ) = {Li(t),H(t)}|ζ ′
αs=0, (3.35)

where using equations (2.5), (2.6), (3.3) and (3.24)

{Li(t),H(t)} = −εijkεklmεmpq

4

(∫ ∫
d3x d3x ′ xj {F0l(x)Fpq(x), F0n(x

′)F0n(x
′)}|

t ′=t

+
εbcdεbfg

4

∫ ∫
d3x d3x ′ xj {F0l(x)Fpq(x), Fcd(x

′)Ffg(x
′)}|

t ′=t

)

= εijkεklmεmpq

∫ ∫
d3x d3x ′ xj

(
F0n(x

′)|t ′=tF0l (x)gqn∂pδ(x − x′)

+
εbcdεbfg

4
Ffg(x

′)|t ′=tFpq(x)gcl∂d ′δ(x′ − x)

)
, (3.36)

where upon integrations by parts at suitable places, using the properties of the Levi-Civita
tensor, and simplifying equation (3.36) will reduce to

{Li(t),H(t)} = −εijk

∫
d3x xjF0k(∂lF0l) − εijkεklm

4

∫
d3x xjFlm(εnpq∂nFpq) ≈ 0, (3.37)

where the first term on the right-hand side vanishes on the constraint surface on account of
ζ5, and the second term vanishes on account of ζ4 or equation (3.10). So, equation (3.35) will
now give

{Li(t),H(t)}D(ζ) = {Li(t),H(t)}|ζ ′
αs=0 = 0. (3.38)

We also have

{Ki(t),H(t)}D(ζ) = {Ki(t),H(t)}|ζ ′
αs=0, (3.39)

where using equations (2.5), (2.6), (3.3) and (3.24)

{Ki(t),H(t)} = εklmεmpq

16

∫ ∫
d3x d3x ′ xi

({F0j (x)F0j (x), Fkl(x
′)Fpq(x

′)}|t ′=t

+ {Fkl(x)Fpq(x), F0j (x
′)F0j (x

′)}|t ′=t

)
= εklmεmpq

2

∫ ∫
d3x d3x ′ xi

(
Fpq(x

′)|t ′=tF0j (x)gjl∂k′δ(x − x′)

+ F0j (x
′)|t ′=tFkl(x)gjp∂qδ(x′ − x)

)
= 1

2
εiklεlpq

∫
d3xF0kFpq = −Pi. (3.40)

So equations (3.39) and (3.40) now give

{Ki(t),H(t)}D(ζ) = {Ki(t),H(t)}|ζ ′
αs=0 = −Pi. (3.41)

Finally, we also have

{Pi(t),H(t)}D(ζ) = {Pi(t),H(t)}|ζ ′
αs=0, (3.42)
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where using equations (2.5), (2.6) and (3.24)

{Pi(t),H(t)} = εimlεmpq

4

∫ ∫
d3x d3x ′

{
F0l(x)Fpq(x), F0j (x

′)F0j (x
′)

+
εkrsεkuv

4
Frs(x

′)Fuv(x
′)
}∣∣∣

t ′=t

= εilmεmpq

∫ ∫
d3x d3x ′

(
F0j (x

′)|t ′=tF0l(x)gjq∂pδ(x − x′)

+
εkrsεkuv

4
Fuv(x

′)|t ′=tFpq(x)glr∂s ′δ(x′ − x)
)

,

where it reduces, upon integrations by parts at suitable places, using the properties of the
Levi-Civita tensor, dropping the surface terms at infinity and simplifying, to

{Pi(t),H(t)} = −
∫

d3x F0i (∂jF0j ) − εijk

4

∫
d3x Fjk(εmpq∂mFpq) ≈ 0, (3.43)

where the first term on the right-hand side vanishes on the constraint surface on account of
ζ5, and the second term vanishes on account of ζ4 or equation (3.10). So, equation (3.42) will
now give

{Pi(t),H(t)}D(ζ) = {Pi(t),H(t)}|ζ ′
αs=0 = 0. (3.44)

Equations (3.14), (3.19), (3.23), (3.27), (3.29), (3.32), (3.38), (3.41) and (3.44) are strong
equations, since inside the Dirac brackets the constraints equations are taken to be strong.
Hence, if the Lorentz algebra is valid at the first level of the Dirac brackets, then it will also
be valid at all higher levels.

4. Conclusion

While [4] showed that the Lorentz invariance of non-Abelian monopoles to be broken at the
‘classical’ level, equations (3.14), (3.19), (3.23), (3.27), (3.29), (3.32), (3.38), (3.41) and
(3.44) here show explicitly that en route to ‘quantization’, we were able to restore the Lorentz
invariance of the ‘t Hooft–Polyakov monopole’s field. Here we used recent results from the
Dirac quantization of the ‘t Hooft–Polyakov monopole field (i.e. in the Higgs vacuum), given
by [9], to show that the Lorentz algebra is valid in this region upon quantization. In particular,
we used the constraints ζ4 and ζ5 repeatedly in evaluating the Dirac brackets of the Lorentz
algebra here. While ζ4 is just the Higgs vacuum condition, it seemed that ζ5 was most essential
in proving the Lorentz invariance in this region.
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